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Abstract

Gene regulation in humans extends beyond the four letter genetic code. Cytosine
methylation, in particular, functions as a critical epigenetic switchboard, dynamically
programming cellular identity, adapting gene expression in response to environmen-
tal cues, and underpinning the onset and progression of numerous diseases. Here we
present Pleiades, a series of whole-genome epigenetic foundation models spanning
three sizes: 90M, 600M, and 7B parameters. Pleiades is trained upon an extensive
proprietary dataset of methylated and unmethylated human DNA sequences totalling
1.9T tokens. We introduce alignment embeddings and stacked hierarchical attention
techniques to provide precise epigenetic modelling without the need for extended
context lengths. Collectively, these advances enable Pleiades to perform a diverse
range of downstream biological and clinical tasks, including nucleotide-level regulatory
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prediction, realistic generation of cell-free DNA fragments and fragment-level cell-
type-of-origin classification, within a unified and scalable computational framework.
We specifically apply Pleiades to the early detection of real-world cohorts of clinical
Alzheimer’s disease and Parkinson’s disease, achieving high-accuracy. We integrate
Pleiades with leading protein biomarkers, achieving state-of-the-art results, underscor-
ing the complementary value of epigenomic and proteomic multi-modal approaches.
By advancing beyond the modelling of pure DNA sequences and relying on limited
genomic regions, Pleiades establishes genome-wide epigenomic modelling as a new
paradigm for clinical diagnostics, synthetic biology, and precision medicine.

1 Introduction

The creation of tools to understand human biology has been critical for the advancement of
health and the prevention of disease for centuries [1–9]. Applications of artificial intelligence
and advanced language modelling to the life sciences have established a new era for the
discovery of biological knowledge, promising diagnostics and therapeutics across a range of
complex human diseases [10–14].

Many such tools and models have focused upon the human genome, effectively cap-
turing the underlying statistics of DNA patterns and coevolutions [11, 15–19]. However,
these models do not capture the epigenome, the set of dynamic environmental and chemi-
cal changes to the genetic code critical for organismal development, cellular fate, and both
the onset and progression of multiple diseases [20–25]. Of the variety of epigenetic alter-
ations, DNA methylation is a critical class [26, 27]. Its study has led to the development
of diagnostics for cancer detection and identification of novel mechanisms responsible for
age-related diseases [28, 29].

The dynamic role of DNA methylation is increasingly evident in the pathophysiology
of neurodegenerative conditions, including Alzheimer’s disease (AD), Parkinson’s disease
(PD), and amyotrophic lateral sclerosis (ALS) [30–35]. These diseases are among the lead-
ing causes of morbidity and mortality in the world: first in the UK, sixth in the USA,
and seventh globally [36–38]. They have historically been challenging to study due to the
lack of routine tissue biopsy, the poor translation of animal models, and an insidious dis-
ease onset with pathology preceding symptoms by up to two decades [39–42]. The lack
of precision diagnostic tools poses a challenge to both patient outcomes and clinical trials
for these neurodegenerative conditions [43–45]. While recent advances in proteomic tests
for AD (most notably plasma pTau-217) and PD (mainly cerebrospinal fluid tests detect-
ing pathological alpha-synuclein seeds) show promise, they remain limited to a subset of
patients and stages of disease, leading to real-world clinical ambiguities [46–51].

In recent years, similar challenges faced in oncology have been addressed with the study
and application of cell-free DNA (cfDNA), fragments of DNA that freely circulate in a
variety of biofluids such as plasma and cerebrospinal fluid (CSF) [28, 52]. Importantly, the
methylation status of cfDNA is indicative of its cellular origin as well as of changes that may
occur throughout the disease process [52, 53]. To date, cfDNA has been successfully utilised
for the early detection of cancers, monitoring of treatment response, and the discovery of
novel biology for downstream therapeutic application [52, 54, 55]

Here we introduce Pleiades, a series of biological foundation models for the human
epigenome spanning three sizes: 90M, 600M, and 7B. The models are built using an
autoregressive transformer decoder architecture with multi-tier hierarchical attention for
set modelling. Pleiades is trained to explicitly capture the environmental contexts and
changes to genetic code. We orchestrated a unique data corpus for pretraining includ-
ing a high-quality human tissue-specific methylation atlas, plasma-derived cfDNA, and a
graph of human genomic diversity [53, 56, 57]. We show that Pleiades achieves state-of-the-
art performance at identifying human genomic annotations, compared to leading genomic
foundation models [12, 15].

We further showcase that appropriately developed foundation models for biology could
provide meaningful clinical utility today. We choose neurodegenerative diseases due to their
global mortality, biological complexity, and need for precision tools. We apply Pleiades to
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a series of tasks involving cfDNA, with a view to early detection of AD and PD [58–61].
We show that Pleiades can be used to identify the cellular origin of circulating cfDNA
in human plasma, generate synthetic fragments in silico with high fidelity, and enrich a
patient sample for certain fragments of interest.

By utilising hierarchical attention — amechanism that first learns patterns in individual
cfDNA reads and then progressively pools them into sample-level signals — Pleiades detects
clinical neurodegenerative disease from plasma-derived cfDNA in real-world AD and PD
cohorts. When combined with proteomic information, the model demonstrates detection
of AD with high-performance.

Pleiades represents a foundation for novel biological discovery for neurodegenera-
tive diseases, for diagnostic applications and future mechanistic interpretation for novel
therapeutic targets.

2 Results

2.1 Pleiades

The Pleiades series scales to 7B parameters and is trained upon a unique data corpus of
1.9T tokens of methylated and unmethylated DNA sequences, using a context length of
1,024 tokens (Fig. 1).

2.1.1 Pretraining

Pleiades adopts an autoregressive transformer decoder architecture, provided at three scales
— 90M, 600M, and 7B parameters.

To effectively pretrain Pleiades, we required large amounts of high-quality sequence data
from a variety of human cell types and samples. While large epigenetic datasets are publicly
available - notably the NIH Roadmap Epigenomics Mapping Consortium and ENCODE
Consortium - heterogeneous sample quality limits their utility for foundation modelling
[22, 53, 62].

To overcome this, we curated our own consolidated corpus of human methylation and
genomic data:

1. The methylation atlas of normal human cell types: whole-genome bisulfite
sequencing (WGBS) of 39 cell-type groups obtained via fluorescence-activated cell
sorting from 205 tissue samples across 137 healthy donors [53].

2. Plasma-derived cfDNA: WGBS and enzymatic methylation sequencing (EM-Seq)
of plasma cell-free DNA from 20 healthy individuals [56].

3. Human genome diversity: a genome graph representative of the 1000 Genomes
Project [57].

Comprehensive dataset preparation and tokenisation details are provided in
Section 4.1.4.

2.1.2 Alignment Embeddings

Accurate epigenomic modelling requires precise representation of genomic context, particu-
larly to capture long-range regulatory interactions critical for gene expression and biological
function [63]. To address this, we introduce Alignment Embeddings (AEs), a novel archi-
tectural component that explicitly encodes genomic coordinates directly into Pleiades’
sequence representations. By embedding positional information, AEs equip Pleiades to
recognise subtle yet biologically meaningful differences among genomic and methylomic
sequences, and without relying upon prohibitively large transformer context windows.

For each nucleotide position within a read, we recovered its GRCh38 genomic position,
using start position, strand and the CIGAR string, then decomposed that position into
four integers: the chromosome, as well as the millions, thousands and ones offsets (≤
249, 999, 999). Each component passed through its own embedding table and the four
vectors were concatenated to form the Alignment Embedding token. These embeddings
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Fig. 1: Epigenomic Foundation Modelling with Pleiades (a) Epigenetic regulation. DNA
and histone modifications modulate the accessibility, transcription, and downstream expression of
DNA, without altering base sequence. Cell type–specific profiles encode high-resolution regulatory
signals. (b) Pretraining and fine-tuning. Pleiades is pretrained on 1.9T tokens of whole-genome
methylated DNA sequences and fine-tuned on disease-specific and control cfDNA. (c) Model and
tasks. The base model supports cfDNA generation, sequence classification such as Cell-Type-of-
Origin and genomic track prediction. The set model enables set level tasks such as disease diagnosis.
(d) Base model architecture. Token-level inputs (sequence, methylation, position, alignment) are
processed by a transformer decoder to produce per-token and sequence embeddings. Emb refers
to embedding. (e) Hierarchical set model. Fragment-level embeddings are first aggregated within
1kb genomic windows to yield region-level vectors; these region vectors are subsequently pooled by
a second transformer encoder to form a single sample-level embedding for downstream inference.
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were trained jointly with the model, covering every base, thereby capturing long-range
epigenomic structure inside a fixed-length transformer.

Unlike recent positional embedding approaches such as CpGPT [16] that encode loca-
tion only for CpG dinucleotides (≈ 30 million loci in GRCh38), our AEs encode the absolute
chromosome and single-base offset for every nucleotide in the human genome (≈ 3.1 billion
positions; Fig. 1d). Full details of the AEs are outlined in 4.1.2.

2.1.3 Hierarchical Set Modelling

Many downstream clinical-genomics tasks require reasoning over an entire bio-sample
rather than individual reads. For such tasks, we treat the collection of all cfDNA reads
originating from one sample as a set of sequences. As sets can be expansive in size — on
the order of 108–109 sequences — efficient aggregation is essential.

To summarise these large sets, we adopt a multi-tier Hierarchical Attention Trans-
former (HAT), inspired by Chalkidis et al. [64]. In our implementation we stack N HAT
blocks: each block pools fixed-size groups of lower-level tokens and passes the condensed
representation upward such that successively higher-order summaries are built in N steps.
The top-level token yields a compact sample-level embedding that feeds directly into a
classifier. This hierarchical pooling preserves long-range dependencies, allowing Pleiades
to tackle large sequencing tasks without the need for long context methods or alternative
base architectures. Full architectural and training details appear in Section 4.1.3.

2.2 DNA Sequence Classification Benchmarks
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Fig. 2: Pleiades Performance Evaluation on Unbiased Nucleotide Transformer Bench-
marks (a) Schematic breakdown of Nucleotide Transformer benchmark tasks. (b) Overall
performance of all models in terms of Matthews Correlation Coefficient (MCC). (c) MCC perfor-
mance on histone modification tasks. (d)MCC performance on gene regulatory elements, including
Enhancers, Promoters and Splice Sites. (e) Few-shot learning capability of Pleiades 7B on an
example NT Benchmark (H3K27ac). For Pleiades 7B, MCC of 0.9925 was achieved after training
with 152 sequences.

To systematically evaluate the capabilities of the Pleiades architecture and epigenetic-
focussed pretraining, we benchmarked the model on established genomic classification tasks
originally introduced by Nucleotide Transformer [15]. These benchmarks include the abil-
ity of a model to identify a variety of genomic features, such as promoters, enhancers,
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splice sites, and histone modification sites, and are commonly used to assess the predictive
performance of DNA sequence models [12, 15] (Fig. 2a).

During our analysis, we identified a significant positional bias within the origi-
nal Nucleotide Transformer dataset, where negative sequences consistently started from
genomic positions divisible by 1, 000 (Supplementary Fig. S1). This bias could inadver-
tently provide any model with an unintended positional signal to easily distinguish between
positive and negative samples, thereby inflating the previously reported performances.
To address this, we introduced a randomised jitter in the range [−500, 499] to the start
positions of negative sequences, effectively removing the positional bias from our findings
(Supplementary Fig. S1). We refer to this as the Unbiased Nucleotide Transformer Bench-
mark. A comprehensive explanation of this adjustment is detailed in Supplementary Section
S1.

We benchmarked our three Pleiades models — 90M, 600M, and 7B — against two
popular baseline genomic foundation models, the largest Nucleotide Transformer model
(Multi-species, 2.5B parameters; NT MS 2.5B) [15] and DNA-BERT2 [12]. Each model was
fine-tuned for exactly five epochs on our Unbiased Nucleotide Transformer Benchmark. To
alleviate potential distribution shift effects between predominantly methylomic pretraining
data for Pleiades (98.5% of total pretraining data) and this purely genomic fine-tuning
dataset, small Pleiades models (90M, 600M) were fine-tuned for one epoch on the DNA
sub-portion of the pretraining dataset prior to evaluation (1.5% of total pretraining data).
Pleiades 7B did not undergo any specific DNA fine-tuning.

Pleiades consistently outperformed baseline models on these tasks, as measured by
Matthews correlation coefficient (MCC) (Fig. 2b). Specifically, Pleiades 7B achieves the
highest MCC scores in 15 of 18 tasks, and is on par with baselines on the remainder with
an overall macro-average MCC of 0.98. The smaller 90M and 600M models exceed baseline
performance in 12 out of 18 tasks as well as on macro-average with overall MCC of 0.76
and 0.77, respectively. This is in contrast to the results for DNABERT-2 (MCC 0.63) and
NT MS 2.5B (MCC 0.67). Full results are detailed in Table S1.

Notably, on histone modification prediction tasks, even small Pleiades models demon-
strated significantly higher performance compared with DNA-only models (Fig. 2c).
Pleiades 90M consistently outperformed the best baseline model, NT MS 2.5B, despite
having 27 times fewer parameters. This is not entirely unexpected, as DNA methylation is
dynamically connected to histone modification in the human genome [65, 66].

We further investigate the Pleiades series by examining the few-shot learning capabili-
ties on these tasks. Fig. 2e shows the performance on the representative histone modification
task for H3K27ac for all models under study, trained for two epochs on the entire dataset.
Pleiades 7B achieves near-perfect MCC (0.9925) after training on only 152 examples. No
other model exhibits few-shot learning capabilities and instead achieve lower overall per-
formance, even after training on the full dataset of approximately 30, 000 samples for 2
epochs.

2.3 Epigenomic Sequence Generation

We next explored the generative capabilities of Pleiades. We applied this specifically to
cfDNA, to assess the feasibility of generation of in silico biological data (Fig. 3a).

We frame the task on cfDNA bio-samples, held out during pretraining, each sequenced
to a depth of 20− 50x. In each sample, we designated 10% of fragments to a seed set, from
which prompts were created for generation. The remaining fragments in the sample (90%)
were assigned to the ground truth set. Each prompt consisted of five full fragments in the
same 1kb region within the seed set and the first three nucleotides of a fragment in the
ground truth set. This target fragment was non-overlapping with the prompt and from the
same 1kb region. We focused on 68 repeat-masked high-coverage 1kb regions. A full list of
these regions can be found in Table S2.
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Fig. 3: In silico cfDNA Generation with Pleiades (a) Task schematic: five observed cfDNA
fragments prompted the model to generate a sixth, non-overlapping fragment. (b) Position-wise
nucleotide accuracy of the generated fragment. (c) Longest common subsequence (LCS) length
between generated and true fragments, expressed relative to the ground-truth length. (d) Cytosine-
context distribution of methylated sites. (e) Pearson correlation of 1kb-binned methylation ratios
between generated and true samples; higher values indicate better concordance. (f) Insert size
distribution of generated fragments for Pleiades 600M and 7B. Evo 2 7B was omitted because its
decoding does not terminate.

We established three classes of evaluation metrics to assess generation quality at three
complementary resolutions:

(i) Nucleotide fidelity : Per-position accuracy and longest-common-subsequence (LCS)
length relative to ground truth fragment length (Fig. 3b,c).

(ii) Methylome concordance: Pearson correlation of aggregated methylation ratios
(CpG/CHG/CHH) across 1kb bins and analysis of methylation with respect to
cytosine context (Fig. 3d,e).

(iii) Fragmentomics: Insert-length distribution and insert size distribution peak periodicity
(Fig. 3f).

For baseline comparisons, we chose Evo 2 7B, a DNA-only language model trained upon
genomic sequences across multiple species [19]. This allowed for a direct assessment of the
utility of DNA-only models without specialised training or data inputs to capture complex
epigenetic signatures.

Assessing nucleotide accuracy, Pleiades 7B achieved 97% accuracy of the first nucleotide
and 73% at base 150, for a mean of 83% (Fig. 3b). Pleiades 600M started at 40% and
declined to 19%, for a mean of 25%. In comparison, Evo 2 7B remained largely static
across the trace (mean 42%). We observed that parameter scaling substantially improved
single-nucleotide level accuracy.
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LCS analysis indicated similar results (Fig. 3c). Pleiades 7B reproduced on average 85%
of ground-truth fragments contiguously (≈ 125 nucleotides of a 150 nucleotide window).
The model achieved amedian relative LCS length of 0.98. This indicates that using the 10%
seed set alone, 50% of generated fragments matched at least 98% of the original sequence.
In contrast, Pleiades 600M and Evo 2 7B had a relative LCS length of only 0.07 and 0.08
(≈ 11–12 nt) on average, respectively.

We next assessed the concordance of methylation across cytosine context (Fig. 3d,e).
Methylation can occur across three genomic contexts: CpG, CHG, and CHH. While the vast
majority of methylation in the human genome occurs at CpG sites, non-CpG methylation
is critical especially for brain biology and brain disease [30, 67–69]. In our ground truth set,
approximately 91% of all methylation occurs at CpG sites, with only 7% at CHH and 2%
at CHG sites. Methylation–context ratio analysis shows that Evo 2 7B under-represented
CpG contexts by 24.1% while over-generating CHH by 24.8%, indicating a bias towards
non-canonical methylation sites. In contrast, Pleiades 600M reduced these errors to +8.2%
(CpG) and −6.6% (CHH) and Pleiades 7B further to +4.0% (CpG) and −3.1% (CHH).
All three models maintained CHG deviations below 1.6% (Figure 3d).

We then compared aggregated methylation correlation between predicted and true
across context (Figure 3e). Pleiades 7B attains a Pearson correlation of 0.91 with ground-
truth CpG methylation, in contrast to 0.64 for Pleiades 600M and 0.37 for Evo 2 7B.
Correlations for non-CpG methylation are lower, with the best performance seen with
Pleiades 7B in each of CHH (0.27 vs. 0.09 Pleiades 600M and −0.04 Evo 2 7B) and CHG
(0.33 vs. −0.11 600M and 0.02 Evo 2 7B). As expected, larger scale and methylation-
focussed pretraining together reduce context-distribution biases and improve locus-specific
methylation recall.

In silico generated fragments were plotted by insert size (Fig. 3f). The distribution
reflects the canonical nucleosome-related architecture with a modest right-shift in their
length distribution. Modal length increased from 154nt in the ground-truth library to 163nt
in the generated set (∆ = +9nt; +5.8%). Rotational phasing of cfDNA, quantified by the
spacing between successive mini-peaks in the insert size spectrum, was virtually preserved
(8.9±0.3nt in silico vs. 7.8±0.2nt empirically). Interestingly, these higher-order chromatin
signatures arise de novo; the model was never directly supplied with fragment-length targets
or nucleosome annotations, underscoring that base-resolution sequence pretraining alone
suffices to learn nucleosome organisation.

Collectively, these results show that scaling from 600M to 7B parameters raises mean
per-nucleotide accuracy from 25% to 83%, increases relative LCS from 0.07 to 0.85,
sharpens CpG methylation correlation from 0.64 to 0.91, and preserves nucleosome-driven
fragment lengths. In contrast, the DNA-only baseline despite matching the 7B parameter
budget, unsurprisingly underperforms across all metrics.

2.4 Cell Type-of-Origin (CToO)

Cell Type-of-Origin (CToO) refers to the specific cell type from which a circulating cfDNA
fragment originates. As plasma-derived cfDNA inherently comprises fragments from diverse
cell types, accurate determination of the CToO of cfDNA fragments is necessary for precise
evaluation of a specific tissue’s physiological state and facilitates early diagnosis, disease
monitoring, and targeted therapeutic interventions [53, 70].

Existing cell type deconvolution methods typically produce aggregate, sample-level
estimates [53, 56]. Here, we propose the Cell Type-of-Origin task, an approach that lever-
ages methylation patterns of individual cfDNA fragments (100–300 bp) to determine their
originating cell type on a per fragment level (Fig. 4a).

We compare overall averaged F1 score of our fragment-level CToO classifier across
progressively larger panels of Differentially Methylated Regions (DMRs) [71]: (i) the 25
marker regions published the tissue methylation atlas [53], as well as the (ii) the top 100
and (iii) the top 1000 regions discovered from our training cohort (Fig. 4b). Per cell type
results are detailed in Fig. S3, while the DMR calling method is described in Section 4.4.
The shift in the UMAP embedding of fragment representations after fine-tuning (Fig. S2)
further illustrates how the model leverages these DMRs to separate cell types in latent
space.

8



We observe that applying stricter filtering criteria to the DMR sets enhances classifi-
cation accuracy. This rigorous filtering is especially beneficial for downstream applications
that require precision within narrowly defined genomic regions.

In contrast, employing larger DMR sets enables broader genomic coverage, allowing
identification of a larger number of fragments originating from any cell type of interest.
Across all three panel sizes, Pleiades 90M and 600M achieve higher macro F1 than the
tuned random forest baseline (e.g. Top-25 panel: 0.67 vs 0.46; Fig. 4b). As the panel expands
to Top 100 and Top 1k regions, this performance gap widens, highlighting the Pleiades’
abilities to capitalise on broader marker sets.

We then assessed performance on an unseen and independent out-of-distribution (OOD)
dataset containing 6 different cell types [72] (Fig. 4b). Fig. S4 illustrates the classification
F1 scores on this OOD dataset across all cell types and models. The model demonstrates
comparable or improved performance across several cell types when evaluated on previously
unseen data.

2.4.1 Cell Type Enrichment

Having demonstrated the capability of Pleiades to accurately predict fragment-level cell
type origins, we next explore the model’s potential for cell type enrichment. Enrichment
involves selectively retaining fragments classified by the model as originating from a specific
cell type, thereby enhancing the representation of a cell-of-interest within naturally mixed
cfDNA samples. To evaluate enrichment, we utilised the OOD dataset used earlier [72]
to generate an in silico admixture for downstream manipulation (Fig. 4c). We applied
predictions from the Pleiades 600Mmodel to select DNA fragments with the highest relative
probabilities assigned to each target cell type. Due to computational constraint, we did not
fine-tune Pleiades 7B.

Results revealed large increases in the target cell type proportions within the top 1K
DMR regions (Fig. 4c). Notably, even rare cell types exhibited substantial enrichment:
neuronal fractions increased from 7.37% to 58.5%, a 7.9-fold enhancement and hepatocytes
from 4% to 73.3%, an 18.3-fold increase.

The enrichment process balanced precision, indicated by high post-enrichment cell type
proportions, and recall, reflecting the retention of relevant fragments (Fig. S5). Further-
more, broader DMR regions enhance genomic coverage, allowing retrieval of more diverse
fragments.

Additionally, we validated this enrichment strategy on a real-world cfDNA sample
with unknown cell type composition. Employing the UXM deconvolution tool to estimate
proportions before and after enrichment (Fig. 4d), we observe substantial improvements
across all evaluated cell types, further confirming the effectiveness of Pleiades for cell type
enrichment.

2.4.2 Cell Type Deconvolution

To assess the effectiveness of our fragment-level approach, we benchmarked Pleiades against
two leading deconvolution methods, UXM [53] and CelFiE [56], which infer cell type ratios
based on global aggregated features from cfDNA samples.

Each experiment involved random sampling of 500,000 fragments, with known ground-
truth cell type ratios and repeated 5 times with different sampling seeds. All methods
require predefined marker regions, restricting the total number of fragments for evaluation.
Performance is quantified using Jensen-Shannon divergence [73]. For UXM and Pleiades,
we used the published Top 25 official marker set to achieve full comparability [53].

Pleiades achieved competitive overall performance compared to both UXM and CelFie
(Fig. 4e). Pleiades performed best in 3 of 5 categories and was tied with UXM in 1. UXM
performed best in the category of 4 cell type mixtures. CelFie did not achieve superior
performance in any of the mixtures (Fig. 4e).

For these tasks, high-performance was achieved with the small Pleiades models. At this
scale, fragment-level CToO yielded robust, generalisable cfDNA cell-type calls.
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2.5 Applications of Pleiades to Neurodegenerative Diseases

With a deep understanding of the human epigenome and cfDNA, we hypothesised Pleiades
could be applied to the detection of early-stage neurodegenerative diseases. As a modality,
cfDNA promises a minimally-invasive alternative to traditional diagnostic and prognostic
methods such as cerebrospinal fluid (CSF) analysis and amyloid-PET scans [74–76].

A cohort of 81 age and sex-matched patients were curated from the Cognitive Disor-
ders Clinic at Oxford University Hospitals, Oxford, UK. Patients were identified as having
either mild AD dementia or mild cognitive impairment (MCI), defined under the ATN
criteria [77]. Patients additionally underwent comprehensive cognitive evaluation and neu-
roimaging for completeness; full details are described in 4.5.1. To take advantage of Pleiades
global genomic understanding, we utilise a whole-genome approach rather than targeted
sequencing methods as previously reported [60]. cfDNA was extracted from plasma and
prepared into libraries for EM-Seq using short-read sequencing at depths > 30x.

For modelling and evaluation, clinical diagnosis was framed as an epigenomic set prob-
lem. Each cfDNA fragment was processed by the pretrained Pleiades base model with a
trailing [CLS] token: the final-layer [CLS] embedding represents that fragment. Embed-
dings from the same sample are concatenated and passed to a HAT block (Fig. 1e) that
builds three nested representations: (i) individual fragments, (ii) genomic regions (aggregat-
ing fragments), and (iii) the complete cfDNA sample (aggregating regions). This hierarchy
mirrors biological organisation and enables region-level attribution alongside sample-level
prediction.

Diagnostic performance of Pleiades for early clinical AD demonstrated high-
performance (Fig. 5b). We utilised a nested cross-validation approach as described in
Section 4.5.2. Pleiades 7B achieved AuROC scores for classification of AD vs control across
specific cell-type identities as follows: 0.81 for microglia, 0.82 for neuron, 0.82 for B cell,
and 0.80 for T cell, on average. Smaller models, as expected, exhibited less accurate and
more variable performance; Pleiades 90M achieved average AuROC scores ranging between
0.60 and 0.64 and Pleiades 600M between 0.64 and 0.71. Notably, we observed significant
scaling improvements with the 7B model in both mean AuROC scores and consistency
of results (Fig. 5). By combining predictions across all available cell types using average
pooling, we achieved an AuROC of 0.89, suggesting the presence of complementary signals
across cell types.

Further, when we trained Pleiades on experimental, non-human quality control DNA
introduced within each cfDNA sample during sequencing (pUC19, Lambda DNA), all
regions were rejected by our marker selection t-test with no regions deemed to contain any
signal relating to clinical disease status (Fig. S6).

In recent years, protein biomarkers have emerged as promising tools in the diagnosis
of Alzheimer’s disease due to their strong biological relevance and established clinical sig-
nificance [49, 78, 79]. In this cohort of patients, individual proteomic biomarkers achieved
a range of AuROC scores: 0.46 (Aβ40), 0.61 (Aβ42), 0.66 (Aβ42/40), 0.79 (NFL), 0.76
(GFAP), 0.78 (pTau-181), and 0.90 (pTau-217) (Fig.5b). Comparing the protein biomark-
ers to Pleiades, we observe improved performance (p < 0.05) of Pleiades relative to markers
Aβ40, Aβ42, Aβ42

Aβ40 , and NFL. The performance of Pleiades 7B showed a trend toward
outperformance compared to protein-related biomarkers GFAP and pTau-181. The perfor-
mance of Pleiades 7B was non-significantly different to pTau-217 (Wilcoxon test details on
this comparison can be found in Table S4). Next, we combine pTau-217 with predictions
from Pleiades 7B across all individual cell type marker regions. This integration results
in significant improvements for all cell types, stabilising diagnosis and notably enhancing
accuracy by approximately 2 − 5 percentage points. This leads to a peak diagnostic per-
formance of 0.97, underscoring the substantial diagnostic advantage gained by integrating
epigenetic and proteomic biomarkers in one model. The best performing multi-omic com-
bination of all cell type marker regions and pTau-217, outperforms both proteomic and
cfDNA approaches (Wilcoxon p-value of 0.06 and 0.03 respectively).

To assess the transferable capabilities of Pleiades across conditions, we apply the model
to the early detection of PD. 160 human plasma samples from patients with PD and
age- and sex-matched controls were procured from a commercial supplier. Samples were
processed in-house identically to AD samples. Microglial region AuROC scores for Pleiades
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7B models are on average 0.82, and neuronal 0.83 across 5 outer folds (Fig. 5c). The average
pooled version of these models achieves AuROC of 0.84.

All disease diagnosis experiments used a nested 5-fold cross-validation, with outer folds
giving error bars (Fig. 5b,c). A detailed example of the methodology given an outer fold is
described in Fig. S6.

Overall, multi-cell type ensembles using Pleiades matched or exceeded state-of-the-art
proteomic markers. Multi-modal combination with pTau-217 demonstrated state-of-the-art
results (AuROC 0.97).
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Fig. 5: Clinical Neurodegenerative Disease Diagnosis with Pleiades (a) Schematic rep-
resentation of the diagnosis process using hierarchical Pleiades models. Process begins with broad
genomic regions. The entire sample set is divided into nested 5-fold cross validations. Inner folds
are used to train region level models and perform a statistical test to select high-performing regions
on the inner validation sets. Then the outer fold train sets are used to train region- and sample-
level models and report final performance. (b) Clinical AD diagnosis performance, reported using
all Pleiades models on cfDNA samples, 7 proteomic markers, and combinations of Pleiades 7B
with pTau-217 protein marker. (c) Clinical PD diagnosis with Pleiades 7B.

.

3 Discussion

Our work demonstrates that modelling both DNA and methylation unlocks capabilities
beyond DNA-only language models. Methylation represents a critical feature set of the
epigenome, the dynamic set of modifications of DNA that extensively influence cellu-
lar identity, function, and change throughout age and disease [26, 27, 29]. The Pleiades
Series of models were created to capture these changes and showcase the utility epigenetic
pretraining across technical, biological, and clinical applications.

Pleiades was trained upon a unique corpus of human DNA and methylation sequences
totalling 1.9T tokens. Importantly, this corpus includes a comprehensive atlas of the
human methylome, spanning 39 cell-type groups [53]. Pleiades spans three parameter sizes
- 90M, 600M and 7B parameters - and utilises alignment embeddings to build a latent
understanding of the human genomic space.
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We assessed Pleiades using the popular Nucleotide Transformer benchmark, which we
modified to remove a bias that may influence evaluation. We showed that all Pleiades model
sizes exhibit state-of-the-art macro performance on this benchmark. Small Pleiades models
outperform DNA-only models with many-fold higher in parameter count, and Pleiades 7B
achieves MCC of 0.98. It is likely that incorporation of high-quality methylation data during
pretraining will improve the performance and capabilities of genomic language models in
many downstream evaluations, perhaps beyond those presented in this work. Uniquely,
Pleiades 7B additionally demonstrated few-shot learning capabilities on this benchmark.

In our work, we are interested in the biology of the brain in age and disease. His-
torically, this has been prohibited by the lack of ground-truth data and the presence of
complex clinical phenotypes [38–40]. In oncology and other complex diseases, applications
of epigenetics have enabled the discovery of both novel diagnostics and therapeutic targets
[52, 54, 55]. With recent research identifying a key role for epigenetic disruption early in
neurological pathology [30], we hypothesised a role for epigenetics to dissect the complexity
of neurological disease.

We therefore explored a role for Pleiades as a downstream discovery tool for neurode-
generative conditions. We first showcased a variety of applications for the model series on
cfDNA, starting with their generative capabilities. Pleiades 7B generated in silico frag-
ments of cfDNA with high accuracy across methylation context and fragment size. This
indicates the largest model in the series has developed a good latent understanding of
the statistical properties of human methylation and cfDNA. Downstream evaluation of
in silico generated fragments in clinical tasks will be necessary to confirm utility, which,
if demonstrated, may bolster small clinical datasets, calibrate diagnostic assays, and/or
create controlled settings for studying cell-specific epigenetic changes.

Pleiades was additionally able to identify the cellular origin of plasma-derived cfDNA,
matching state-of-the-art deconvolution methods. One step further, Pleiades was able to
enrich a sample for fragments derived from a particular cell-of-interest. Future work will
characterise the potential clinnical utility of cell-type based enrichment.

We then demonstrated Pleiades’ ability in biomarker discovery, given a starting set of
DMRs. Our results support the high-performance of both cfDNA and proteomic approaches
independently. We suspect a combination of foundation modelling for both to be par-
ticularly advantageous, for improved AuROCs and further stratification or subtyping of
disease. It is possible that the underlying mechanisms for both proteomic and epigenetic
signatures identified are via different mechanisms, e.g. neuronal loss and microglia-induced
inflammation for cfDNA and protein oligomerisation/aggregation for proteomic markers.
Downstream work would benefit from interrogation of the subtypes of methylation and
regions that are driving model decisions.

Limitations

Despite these advances, several constraints remain:

1. Limited training data. Pretraining relied solely upon methylated DNA from healthy
human tissues and cfDNA. The absence of other epigenetic marks and non-human
genomes curtails multi-omic and cross-species generalisation. As shown in Section 2.5,
even simple multimodal methods significantly boost diagnostic accuracy, implying
that broader multi-omic data at both pretraining and fine-tuning stages could yield
further gains. Recently published work indicated strong potential for the inclusion of
large, multi-parametric proteomic information for downstream diagnostics and prog-
nostics for neurological conditions [42, 80, 81]. In addition, our work has focussed
on whole-genome sequencing of cfDNA (30-50x). While this allows for a global view
of a patient biosample, it does increase the risk of over-fitting. Additionally, drop in
whole-genome sequencing costs does require consideration of much higher depths of
sampling (i.e. >1,000x). Target approaches such as bespoke methylation panels may
also be beneficial.

2. Cohort size and diversity. The clinical cohorts assessed for downstream diagnosis
are modest and demographically narrow. Larger studies with broader demographic
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coverage and independent replication sets will be needed to validate Pleiades-based
diagnostics for routine clinical use.

3. Interpretability gap. The marker regions within the genome, automatically found
by our biomarker discovery method, are a positive step towards explainable AI within
biology. While these regions can reveal where the model finds signal, the model does
not yet annotate what exactly the extracted features are, why they drive model deci-
sions, and what biological mechanisms they hint at. Bridging this gap will require
more rigorous interpretability techniques.

Future Work

Multi-modal information will improve the capabilities of Pleiades for both biomarker dis-
covery and future mechanism identification for downstream targets. Expanding Pleiades
to additional epigenomic modalities (ATAC-seq, ChIP-seq, etc.) alongside the integration
of transcriptomic and proteomic data may improve diagnostic and prognostic capabilities.
Incorporation of high-quality single-cell brain atlases of ageing and degeneration could yield
a multi-omic brain foundation model [69]. Incorporating set-level pretraining objectives
alongside the autoregressive loss, together with architectural advances for representing very
large sets, may produce more expressive sample-level embeddings and boost diagnostic and
generative performance.

In clinical practice, Pleiades may represent a future of multi-modal early detection of
brain disease. Alone, Pleiades applied to cfDNA approaches the accuracy of proteomic
measures such as pTau-217, with combinations yielding the highest AuROC. With the scale
of data present within a single cfDNA (and in the future multi-omic) sample, our approach
may showcase meaningful utility toward staging and sub-classification of neurodegenerative
diseases. To rigorously confirm utility and expand both biological and clinical scope, models
should be expanded on multi-centre, longitudinal cohorts that span diverse ancestries, age
ranges, and diseases.

Building upon results observed when scaling to 7B parameters, we also plan to investi-
gate larger foundation models and memory-efficient transformer variants that accommodate
substantially longer context windows — potentially on the order of megabases — so that
Pleiades can tackle genome-scale set problems end-to-end. Finally, we seek to develop a ded-
icated interpretability pipeline aiming to turn model attributions into mechanistic insights
and clinically actionable biomarkers. The incorporation of reinforcement learning will likely
be necessary for further improvements in Pleiades’ capabilities.

Multi-modal foundation modelling for biology offers promise to enable precision
medicine and unlock novel insights for complex diseases. Pleiades establishes the first
step and displays the effectiveness of jointly modelling DNA and methylation in a uni-
fied, general-purpose foundation model. Our work lays the groundwork for accelerated
biomarker discovery, and deeper, interpretable mechanistic insights into the genomic reg-
ulation of brain ageing and disease. Near-term, effective staging and subtyping of disease
would improve clinical outcomes and could enable a molecular classification of neurological
disease. Longer-term, wider expansions of modality and improvements in training archi-
tecture and methodology would encourage the creation of a brain foundation model for
discovery of novel mechanisms and targets for precision therapies.

4 Methods

4.1 Pleiades Pretraining

4.1.1 Architecture and Pretraining Procedure

The Pleiades base model is an auto-regressive language model based on the generative
pretrained transformer architecture [82]. It uses character-level tokenisation that represents
each nucleotide with a capital letter (A, C, T, G) and methylation as (<m>). For the
activation function of the Multi Layer Perceptron (MLP) layers, we used squared ReLU [83]
for three primary reasons: (a) it is comparatively performant on several language-related
tasks [84, 85]; (b) it can produce sparse representations; and (c) it has been empirically
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shown to be the most efficient activation function for sparse LLMs [86]. Rotary positional
embeddings (RoPE) [87] were utilised to represent the relative position of input tokens.

The models are optimised using the AdamW algorithm [88] with a learning rate of 10−4

and a cosine annealing learning schedule. In order to speed up training and reduce memory
usage, we used bfloat16 mixed precision [89]. Full hyper parameters are specified in Table 1

For pretraining, we used the standard cross-entropy objective function. Given a sequence
x = (x1, . . . , xT ), the autoregressive language model is trained to minimise the negative
log-likelihood:

L = −
T∑

t=1

logP (xt | x<t; θ)

where P (xt | x<t; θ) is the model’s predicted probability of token xt given the previous
context x<t.

Table 1: Pleiades Architecture Details

Epigenomic Sequence Model Epigenomic Set Model

Property 90M 600M 7B 1’st Order 2’nd Order

Layers 12 32 42 4 2
Model Dimension 768 1280 4096 7681 768
FFN Dimension 768 1280 4096 768 768
Attention Heads 12 20 32 12 12
Peak Learning Rate 10−4 10−4 10−5 10−6 10−6

Warmup Steps 200 200 2000 0 0
Vocabulary Size 598 598 598 — —
Max Context 1024 1024 1024 1024 1024

1For larger 600M and 7B models, a simple linear projection layer was used to convert the higher dimen-
sionality base model embeddings to 768 dimensions for the set transformers.

The input to the model during pretraining consisted of sequences from various sources
including the human genome, specific cells, and plasma. The variability of the type of
sequences was introduced to the model with special tokens at the beginning and the end
with <dna>,<mdna> and <cfdna> for pure nucleotide, sequences that include methylation,
and cfDNA fragments respectively. If the cell type of origin is known, a <cell type> token
is used followed by the name of the cell type and the closing token </cell type>. Table 2
shows how these three different modalities would look like as sequences of tokens.

Table 2: Examples of DNA Representations

Property Value

DNA Sequence <dna>ATGCGTACGTTAGCTAGCTAGCTAGCGTACGTTAGCTAGCTAGCT</dna>

Methylated DNA <mdna>ATGCGTAC<m>GTTAGCTAGCTAGCTAGC<m>GTACGTT</mdna>

<cell type>neuron</cell type>

cfDNA <cfdna>ATGCGTACGTTAGCTAGCTAGCTAGCGTACGTTAGCTAGCTAGCT</cfdna>

4.1.2 Alignment Embeddings

Alignment Embeddings (AEs) encode genomic location by explicitly defining the chromo-
some number and precise position for each nucleotide, computed with reference to the
Concise Idiosyncratic Gapped Alignment Report (CIGAR) strings against the GRCh38 ref-
erence genome. Given that the human genome comprises over 3 billion base pairs, positional
information can span extensive ranges, exemplified by the largest contiguous segment (chr1)
containing approximately 249 million base pairs [90]. To be equally sensitive to changes in
genomic position in the largest to the smallest scale, we segmented the position within the
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chromosome into three distinct parts: millions, thousands and ones. Consequently, each
nucleotide was represented by a set of four tensors corresponding to the chromosome and
segmented positional values:

[Pchr, Pm, Pk, Pu]

with constraints

0 < Pchr < 26, 0 < Pm < 250, 0 < Pk < 1000, 0 < Pu < 1000

Note that we encode chromosome X, Y, and the mitochondrial chromosome as 23, 24
and 25 respectively. These components are individually embedded via learned embeddings
as follows:

Pi = LearnedEmbedding(i), i ∈ {chr,m, k, u}
Formally, the complete positional embedding matrix P ∈ RL×d is defined such that

each row P [i, :] encodes positional information for the nucleotide at position i:

Pi = LearnedEmbedding(i)

4.1.3 Set-level modelling with a multi-tier Hierarchical Attention
Transformer

Many clinical and biological applications rely on sample-level information drawn from sets
that contain 108−109 cfDNA fragments. To obtain a compact representation of such large
sets we place a Hierarchical Attention Transformer (HAT) [64] on top of the frozen
sequence-level Pleiades model (Fig. 1e).

Architecture.

Each fragment is first processed by the base decoder; the corresponding contextual [CLS]
embedding forms the input to the HAT. A single HAT block attends over this collection of
embeddings and emits a set token that summarises the group. We stack N such blocks, so
that the output token of tier k serves as one element in the input set of tier k+1. This recur-
sive design yields successively higher-order representations — fragment→ region→ sample
— while keeping memory requirements fixed.

Data flow.

(i) Tier 0: sequence decoder produces one [CLS] vector per fragment.
(ii) Tier 1: a HAT encoder attends over all fragment vectors within a 1kb window (default)

and outputs a region vector.
(iii) Tier 2 . . . N : region vectors are concatenated and passed through additional HAT

encoders; the final [CLS] token forms the input to the task-specific head.

Advantages.

The multi-tier scheme (a) preserves information at multiple genomic scales, (b) accom-
modates arbitrary set sizes, and (c) distinguishes fragments from different loci without
enlarging the transformer context window. All hyper-parameters are listed in 1.

4.1.4 Pretraining Datasets

The pretraining data corpus is a compilation of four different sources: (1) the DNA methy-
lation atlas of normal human cell types [53]; (2) WGBS of cfDNA from healthy individuals
[56]; (3) EMSeq of cfDNA from healthy individuals; (4) and a genomic graph of the 1000G
dataset [57], a human WGS dataset that captures high haplotypic variation. The corpus
includes both single-end and paired-end sequencing reads. For single-end reads and haplo-
type reference reads, each read is treated as an individual fragment. For paired-end reads,
we merged overlapping read pairs into a single fragment to increase the effective sequence
context and reduce redundancy.
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The DNA methylation atlas is a comprehensive WGBS dataset of 39 human cell types
from 205 healthy tissue samples. It provides high-resolution methylation maps at the frag-
ment level rather than just individual CpG sites. Loyfer et al. (2023) [53] identify over
1000 cell type specific Differentially Methylated Regions (DMRs), focusing on uniquely
unmethylated/methylated regions, which usually reside in enhancers and contain bind-
ing sites for tissue-specific transcriptional regulators. These DMRs are consistent between
individuals, reflecting the cell lineage and cell type specific programmes. To leverage this
dataset for pretraining, we prioritise CpG-rich regions by including all CpG islands, shores,
and shelves, while downsampling open sea regions to 5%.

We utilise cfDNA datasets prepared with experimental methods to capture methyla-
tion information. Specifically, we include 10 healthy samples from Caggiano et al. (2021)’s
[56] study generated via WGBS alongside 10 healthy samples from our clinical samples
generated via EMSeq. In both cases, the data format is FASTQ and is processed using a
modified MethylSeq pipeline [91] with Bismark [92] as the aligner. After we generated the
downstream BAM files, we followed the same pre-processing and filtering steps as the DNA
methylation atlas [53].

Following a similar process to that in Dalla-Torre et al. (2024) [15], we combined the
human reference genome (GRCh38) with phased haplotype variant data from the 1000
Genomes Project (release version 20220422) to construct chromosome-specific variation
graphs [57]. The construction process used VG (version 1.62.0) [93], employing the ”con-
struct” command to integrate sequence and variation data. Each variation graph was
indexed using the 1000G preset, ensuring the retention of haplotype-specific pathways. To
analyse localised genomic variation, a sliding window approach was applied to each vari-
ation graph. A window size of 1 million base pairs was defined and the window moved
incrementally along reference positions. For each window, 40 haplotype paths were ran-
domly sampled from the preserved haplotype pathways. This subsampling was conducted
to represent diverse genomic contexts within a manageable computational framework. Sim-
ulated sequencing reads were generated from the subsampled haplotype paths for each
window. Read simulation was performed to achieve approximately 20x coverage per haplo-
type. Each read was assigned a random start position within the window and read lengths
were restricted to a range of 500 to 1000 nucleotides. These parameters were selected
to mimic the characteristics of real-world sequencing while maintaining high coverage for
downstream analysis.

4.1.5 Computational Resources

We pretrained Pleiades 7B for approximately 10 days on 256 H100 GPUs (32 nodes × 8).
For the Unbiased Nucleotide Transformer benchmark, we fine-tuned between ∼4 minutes
and ∼1 hour (depending on the task) on a single H200 GPU. Pleiades 600M was trained
for ∼18h on 8 H200 GPUs (1 node) for Top 25 regions, ∼11h on 64 H200 GPUs (8 nodes)
for Top 100 regions and ∼22h on 64 H200 GPUs (8 nodes) for Top 1000 regions. Finally,
for our disease diagnosis task we performed ∼17h of reconstruction-loss training of Pleiades
7B on 128 H100 GPUs (16 nodes) followed by disease diagnosis fine-tuning for ∼8h per
cell-type region on 32 H200 GPUs (4 nodes).

4.2 Nucleotide Transformer Benchmarks

In order to test the performance of Pleiades and the baseline models on the Nucleotide
Transformer benchmarks, we first had to create a newly randomised version of the
Nucleotide Transformer benchmarks to counter the effects of the strong bias in positions
of negative sequences in the dataset. Supplementary Section S1 and Fig. S1 explain the
problem within the official Nucleotide Transformer benchmarks and our proposed solution
in detail.

The next step was to fine-tune all models for exactly five epochs on the revised Unbiased
Nucleotide Transformer Benchmark train set and measure the MCC. The reported values
are the test set MCC at the end of training.

For Pleiades, a [CLS] token was appended to the end of the input sequence and its
embeddings were directly fed to a classification head. This classification head is a simple
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2−layer MLP with a ReLU non-linearity in between. The first layer has the same input
and output dimension which equals the base model’s hidden dimension size. The second
layer projects down to as many dimensions as the task has labels, 2 for binary classification
tasks and 3 for the tasks that have 3 labels, Splicing (All) and Enhancers (Types). Table
3 shows the exact hyperparameters used for fine-tuning Pleiades models on NT tasks. All
Pleiades models were fine-tuned on H200 GPUs.

Table 3: Pleiades Hyperparameters for Unbiased Nucleotide Transformer Benchmarks

Property 90M 600M 7B 7B High LR1

Peak Learning Rate 10−4 10−4 10−6 6× 10−5

Global Batch Size 48 288 288 96
Unfrozen Layers All All All Last 2 Layers

1This setting was only used for the two tasks Splicing (All) and Promoter (TATA).

Pleiades 90M and 600M were fine-tuned for an epoch on the DNA-only portion of our
pretraining dataset, to bring their representations closer to pure DNA before fine-tuning
for the benchmark tasks. This was not performed for Pleiades 7B.

Both baseline models were fine-tuned using their published code and with default hyper-
parameters. DNABERT-2 was fine-tuned using the fine-tune script in this official github
page with learning rate 10−4 on V100 GPUs with the maximum batch size that would fit
per device. NT 2.5B MS was fine-tuned using LORA and with a learning rate 5× 10−4 on
H200 GPUs.

4.3 Epigenomic Sequence Generation

To evaluate model performance on cfDNA generation, we started from real world biosam-
ples, held out during pretraining and aimed to reconstruct them in silico. Two biosamples
from the test set of the pretraining data were used for this analysis [56], both of which were
processed using WGBS for library preparation and sequenced to a depth of 30−50x. In each
sample, we designated 10% of fragments to a seed set, from which prompts were created
for generation. The remaining fragments in the sample (90%) were assigned to the ground
truth set. Each prompt consisted of five full fragments in the same 1kb region within the
seed set and the cfDNA start special token <cfdna>, followed by the first three nucleotides
of a fragment in the ground truth set. This target fragment was non-overlapping with the
prompt and from the same 1kb region. We focused on 68 repeat-masked high-coverage 1kb
regions. A full list of these regions can be found in Table S2. During generation we applied
a top k sampling method where k = 2 with a temperature T = 0.7. Decoding terminated
when either

• The cfDNA end special token </cfdna> was generated.
• Maximum token limit was reached, which is set to c − length(p), where c is model

context (1024) and p is the prompt.

4.4 CToO

4.4.1 Contrastive Training Procedure and Loss

Within a marker region for any cell type, fragments from the target cell type are vastly
outnumbered by fragments from other cell types. This severe class-imbalance destabilises
training and can cause the model to overfit the dominant class. To counteract this problem,
we adopted a contrastive learning strategy. The method clusters the scarce positive exam-
ples while repelling the overwhelming pool of negatives by (a) sampling a tractable subset
of negative reads, (b) augmenting the positives, and (c) re-weighting the loss. During train-
ing, the network directly compared reads from different cell types, encouraging sequences
from the same cell type to co-locate in representation space and pushing sequences from
different types apart. We implemented this behaviour with a contrastive loss that combines

18

https://github.com/MAGICS-LAB/DNABERT_2
https://github.com/MAGICS-LAB/DNABERT_2


mean-based loss and hard negative mining [94, 95]. In order to maximise model generalis-
ability during each epoch of training, random negative examples were re-sampled for each
anchor.

Mean-based loss provided stable overall training by considering an average of negative
examples. Hard negative mining helped with fine-grained discrimination, especially when
certain cell types share similar methylation patterns. The combination enabled the model
to learn both broad distinctions and subtle differences between cell types, improving its
ability to generalise.

In addition, the model performed cell type classification, where it processed methylation
sequences through Pleiades base model to generate numerical embeddings and predict the
corresponding cell type via a classification head. This was supervised by a classification
loss, which relied upon pooled sequence representations.

To optimise both learning strategies, the model was trained with a combined loss,
where each component was weighted by a multiplier (mclass and mcontr) to balance their
contributions.

By simultaneously learning from both tasks, the model built a deep understanding of
cell type specific epigenetic features. Contrastive learning enhanced its ability to distinguish
patterns, while classification provided direct supervision for accurate cell type prediction.
This dual approach ensured robust representations, even in cases where some cell types
were more common than others.

Lcontrastive = (1− λ)Lmean + λLhard

where

Lmean =
max(0, dpos − dneg +margin)

temperature
,

Lhard =
max(0, dpos − dhardest neg +margin)

temperature
.

where

dpos =

∑
pi∈S+

δ(pi, a)

|S+|
,

dneg =

∑
nj∈S−

δ(nj , a)

|S−|
,

dhardest neg = min
nj∈S−

δ(nj , a)

where a is the vector representation of the anchor sample and S+ and S− are the set
of all positive and negative example’s vector representations, respectively.

The distance metric δ was defined as follows:

δ(v, w) = 1− v

∥v∥2
.

w

∥w∥2
where v and w are input vectors and ∥v∥2 and ∥w∥2 represents l2 norms of these vectors.

The distance metric is 1− cosine similarity.
The hyper-parameters used are:

λ = 0.3, margin = 0.1, temperature = 0.1.

Lclassification = CrossEntropy(softmax(ypred), y)

Here,

x = [mean(h);max(h)] (concatenated pooling),

ypred = W2σ(W1x+ b1) + b2,

y = one-hot encoded cell type labels.

Ltotal = mclassLclassification +mcontrLcontrastive.
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We also experimented with a regularisation term added to the contrastive loss to prevent
representation collapse and increase training stability.

Lcontrastive with regularization = Lcontrastive + λ
∑
i ̸=j

(
Ẽ⊤Ẽ

)2

ij

where Ẽ ∈ RN×d is the matrix of row-wise normalised embeddings, and λ is the
multiplier (regularisation coefficient) controlling the strength of the diversity penalty.

4.4.2 Cell-Type Differentially Methylated Regions

To fine-tune the model for the CToO task, we curated a specialised dataset derived from
the DNA methylation atlas [53]. These samples were randomly split into train and test
sets. DMRs were identified for each cell type in a 1-vs-all manner to distinguish between
each cell type and all-the-rest. DMRs were called exclusively from the training set to pre-
vent information leakage into the test set, using the open-source software wgbstools [96].
The genome segmentation and marker finding were done using segment and find markers

commands with each marker region containing ≥ 2 CpGs, marker size from 50 to 2000bp,
delta mean difference ≤ 0.4, significance p-value ≤ 0.01 and employing Bayesian pseudo-
counts of 15 for both C and T counts. From the resulting DMRs, we selected the top 100
and top 1, 000 markers per cell type, yielding 3, 801 and 34, 134 regions in total respectively.
We also used the official UXM top 25 marker set for reference [53].

For DNA sequences intersecting each DMR region, the ones belonging to the target
cell type of the DMR were annotated as positives with the rest annotated as negatives.
Negative reads have broadly similar methylation signals, so their labels were replaced with
a generic negative label, for example not neuron if the DMR target is neuron. We used
contrastive learning to force the model to separate its representations of reads for DMR
targets and other cell types within each DMR region. In order to do that, each positive read
within a DMR region were used as an anchor, while a constant number of other positive
examples (3) are randomly selected to match with each anchor alongside a constant number
of negative examples (36) from other cell types in the same region. This random sampling
was done per training epoch to maximise model generalisability.

Final classification results were calculated on the total set of reads that intersected with
the DMR regions. For performance comparison, we evaluated three DMR sets: the top 25
DMR set reported by [53], and Top 100 and Top 1000 DMR sets. To assess generalisation,
we tested on an out-of-distribution dataset incorporating sequence data [72], using only
reads intersecting the predefined DMR sets.

4.4.3 Out-of-Distribution data for evaluation

For evaluating CToO and deconvolution tools, we obtained external data (Do et al., 2020)
[72] and only considered healthy samples. This data set consists of 478 FACS-processed
samples from various cell types. Of the total samples, 96 failed quality control criteria:
92 had low sequencing coverage and 4 showed evidence of failed bisulfite conversion. We
grouped related cell types into major groups defined by the methylation atlas [53] - six
groups were selected. Data was processed similarly to our cfDNA data, but with an under-
lying aligner such as Bismark [92] due to its native support for per-base DNA methylation
calling.

From the entire cohort, we selected the following cell types for our mixture experiments:
B cell, monocyte & macrophage cell, T cell, liver hepatocyte, oligodendrocyte, and neuronal
cells. Using these 6 cell type samples, we created 14 different cell type mixtures ranging
from six pure cell type, three types of 2 cell type mix, three types of 3 cell type mix, one
type of 4 cell type mix and a 6 cell type mix. Each mix had an equal proportion of cell
types. The complete breakdown of the mixtures is shown in Table S3.

For a fair comparison, we used the same marker regions for both Pleiades and UXM
with the corresponding cell atlas. In contrast, CelFiE required a distinct cell-atlas format
and marker-region caller, and relied upon raw coverage instead of methylation percentages.
Therefore we built a custom atlas for CelFiE to improve comparability of the results.
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We fine-tuned Pleiades 90M over official regions from the Top 25 markers from UXM [53]
and performed classification over fragments. For each sample we aggregated the predictions
of all fragments and calculated the cell type composition to get a deconvolution result. The
same Top 25 markers from 2.4.2 were used to run the deconvolution tool of UXM with the
parameter --rlen 2, which is the minimum number of CpG sites in each fragment.

For CelFiE, we used scripts provided by Caggiano et al. (2021) [56] to identify DMRs for
each of the 39 cell type groups, selecting the top 100 CpG sites per marker as recommended.
We then estimated cell type proportions by running the authors’ deconvolution script with
its default parameters and excluding any unknown cell types.

4.5 Neurodegnerative Disease Diagnosis

4.5.1 Dataset

We create a proprietary AD cfDNA dataset. Patients with AD dementia and elderly healthy
controls were recruited from the Cognitive Disorders Clinic at the John Radcliffe Hos-
pital in Oxford, UK, or open day events. AD dementia patients were defined as having
AD clinical syndrome according to the 2018 ATN criteria [77]. Patients with AD had a
progressive, multidomain, largely amnestic cognitive impairment and underwent MRI and
FDG-PET imaging, the results of which were in keeping with a clinical diagnosis of AD
(temporo-parietal atrophy and hypometabolism). ATN status was reviewed after plasma
biomarker analysis to ensure AD dementia patients had an ATN profile compatible with
their diagnosis. Elderly healthy controls were greater than 50 years old, had no psychiatric
or neurological illness and were not on regular psychoactive drugs. They also underwent
brain MRI imaging, and only participants with a normal MRI scan, reviewed by two inde-
pendent senior neurologists, were included in the study. Participants underwent in-person
blood collection and face-to-face standard cognitive testing, the Addenbrooke’s Cognitive
Examination-III (ACE-III), at the time of the visit. ACE scores lower than 88/100 were
considered abnormal, and all healthy controls scoring below that threshold were excluded
from this study. However, patients with AD were not recruited based on a fixed threshold
on standard cognitive testing but rather took part in the study according to the criteria
outlined above.

Blood was collected in six ethylenediaminetetraacetic acid (EDTA) tubes (10 mL each),
and centrifuged (1800 g, room temperature, 10 minutes). The EDTA tubes were filled
completely and gently inverted after collection to avoid coagulation. After centrifugation,
plasma from all six tubes were transferred into one 50-mL polypropylene tube, mixed,
aliquoted into 0.5 mL polypropylene tubes (Fluid X, Tri-coded Tube, Azenta Life Sciences),
and stored at 4◦C, until (less than 8 hours) it was transferred into a −80◦C freezer. The
time between blood collection and centrifugation was less than 30 minutes. Transfer time
between 4◦C and −80◦C storage was < 20 minutes, and the samples were kept refrigerated
during transport. All cryovials were anonymised, and the unique cryovial code was logged
into a secure database, linked to the participant’s anonymous code and visit number.

PD samples were procured from a commercial supplier (AMSBIO). A cohort of sex-
and age-matched samples were selected. Individuals with PD were defined as having the
clincial features of bradykinesia with additionally rigidity and/or tremor. Healthy controls
selected had no psychiatric or neurological illness and were not on regular psychoactive
drugs. Samples were collected in EDTA tubes and processed similarly to AD samples.

cfDNA was extracted from 0.5-1.0ml plasma using the QIAamp Circulating Nucleic
Acid Kit. Sequencing libraries were generated with the NEBNext Enzymatic Methyl-seq
and sequenced on Illumina short read sequencer for depths between 30-50x. Data was
processed using a modified MethylSeq pipeline [91] with BWA-Meth [97] as the aligner. Per-
read methylation calls were processed using a modified MethylDackel tool [98]; non-CpG
methylation calling feature was added. Processed BAM files were converted into fragments
as described in 4.1.4.

For protein measurements, samples were shipped on dry ice to the Biomarker Facto-
ry/Fluid Biomarker Laboratory, UK Dementia Research Institute at University College
London (UCL), London. The Dementia Research Institute (DRI) laboratory staff carried
out the analyses. Plasma Aβ40, Aβ42, GFAP, and NfL were measured by single-molecule
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array (Simoa) technology using the Neurology 4-plexE assay on an HD-X analyzer (Quan-
terix), according to manufacturer’s instructions. Plasma p-Tau181 and p-Tau217 were also
measured by Simoa using the pTau-181 Advantage and ALZpath assays on an HD-X ana-
lyzer (Quanterix). Samples were analysed in one round of experiments using one batch of
reagents with intra-assay coefficients of variation below 10% and the analysts blinded to
clinical data.

Since using the entire human genome space would be computationally prohibitive, we
utilised cell type specific DMRs to extract regions for microglia, neuron, B cells, and T
cells. We utilised the top 100 DMRs as described in Section 4.4.2 for all but microglia,
because they are not included in the methylation atlas. For the latter, we used the 59
DMRs proposed by Tian et al. (2023) [69].

4.5.2 Marker Discovery Methodology

We addressed the challenges of discovering markers for neurodegenerative diseases, such as
the vast exploration space, low signal-to-noise ratio, and signal heterogeneity by employ-
ing Pleiades to search the epigenome, amplify weak signals, and capture cell-type-specific
patterns. We curated data based upon biological relevance, targeting specific cell-type
DMRs.

Starting from 59 DMRs for microglia and 100 DMRs each for neurons, B cells and
T cells, Pleiades was utilised to further filter them to a concise set of high-confidence
candidates, using nested 5-fold cross validation. The inner CV folds were used to train the
region level HAT models and select the best marker regions, while outer folds were used
for final fine-tuning and performance measurement. The overall workflow is summarised in
Table 4.

To account for low signal-to-noise ratio and high variability, we selected regions with
AuROC> 0.6 for Alzheimer’s disease and AuROC> 0.65 for Parkinson’s disease as well as
significance of p− value < 0.01 for at least four of five inner folds across the last 50 epochs
of training. Each inner CV fold was trained for 100 epochs, and validation AuROC scores
from the last 50 epochs were examined. We applied a Student’s t-test to assess statistical
significance above the threshold. Regions passing the t-test in at least four of the five
inner CV folds were sorted by the number of passing folds and average AuROC score in
descending order. The top four were selected for further training phases to fit within GPU
memory constraints, particularly for larger models.

Pleiades hierarchical architecture leverages the natural biological structure of cfDNA
fragmentomics, progressing from the fragment level to the sample level. It builds on a
base sequence-level model by introducing a region-level model. This region-level model is
fine-tuned on the final, refined set of regions, after the inner cross validation step. Finally,
a sample-level model is trained to predict the Alzheimer’s disease condition. This three-
tiered hierarchy — fragment → region → sample — allows the model to learn structured,
set-based features in a computationally efficient manner. Importantly, it avoids the need
for long-context models, which are constrained by the quadratic complexity of standard
Transformer architectures.

4.5.3 Learning Biological Hierarchical Representations

Fragment Level Representation Learning: We fine-tuned the base Pleiades model to
enhance representations of cfDNA fragments using a reconstruction head. Although the
original pretraining dataset included cfDNA fragments, their proportion was small relative
to other data, and fine-tuning improved diagnostic performance. Table 5 details the recon-
struction head architecture. This lightweight transformer decoder reconstructs the input
sequence conditioned on [CLS] token sequence embeddings. It functions as an autoencoder,
incorporating global context via cross-attention into token-level reconstruction. With two
layers, it remains computationally efficient compared to the base model. Dropout was
applied to attention and feedforward layers to mitigate over-fitting. To promote diverse
and informative representations, we combined a diversity loss with the reconstruction
loss, penalising similarity among sequence embeddings. This dual objective captures input
content and structural properties in a compact embedding space.

22



Table 4: Simplified Three-Step Workflow for Diagnostic Marker Discovery

Marker Filtering Region-Level Training Sample-Level Training

Goal Find regions that carry
useful signals

Learn patterns from
regions using weak labels

Make final predictions for
each sample

Supervision Weak supervision Weak supervision Full supervision

Model Type 1st order HAT 1st order HAT 2nd order HAT

Approach Use cross-validation to
select the most infor-
mative regions based on
performance and statistics

Train models on region
data using labels from
whole samples; represent
each region with embed-
dings

Train a final model using
true sample labels and
region-level outputs

Input Data All genomic regions Filtered regions from pre-
vious step

Same filtered regions

Output Selected genomic regions
as biomarkers

Region-level predictions or
embeddings

Final diagnosis for each
sample

Table 5: Reconstruction Head Configuration

Property Value

Architecture Transformer Decoder

Input Dimension d (same as base model)

Attention Heads h (same as base model)

Layers 2

Dropout Rate (Attention) 0.1

Dropout Rate (Feedforward) 0.1

Cross-Attention Enabled

Peak Learning Rate 10−6

We defined the reconstruction head’s input and output mathematically as follows. The
input sequence is given by:

X ∈ RB×L×d

where B is the batch size, L is the sequence length, and d is the embedding dimension.
Sequence embeddings are computed by extracting the [CLS] token representation from the
input and used to form the context:

ECLS ∈ RB×1×d

The decoder receives both the input sequence and the context embeddings, producing
token-level output logits:

Y = Decoder(X,ECLS), Y ∈ RB×L×V

where V is the vocabulary size.
Training was supervised via a combination of two loss functions. The first is the standard

reconstruction loss:
Lrecon = CrossEntropyLoss(Y, labels)

which encourages the model to accurately reconstruct the input sequence. The second is a
correlation-based diversity loss:

Ldiv = λ
∑
i̸=j

(⟨êi, êj⟩)2
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where êi =
ei

∥ei∥2
is the normalised [CLS] embedding for sample i, and λ is a small scaling

factor, in our case 10−6. This loss penalises cosine similarity between distinct embeddings,
encouraging orthogonality and diversity across the batch. The total loss is the sum of both
components:

Ltotal = Lrecon + Ldiv

This setup enabled the model to learn compact, informative embeddings that serve
downstream tasks while remaining efficient and robust.

Region Level Representation Learning By keeping the base model weights frozen,
we trained a hierarchical transformer with a classification head on the task of predicting
whether an individual has the target disease. The input to the model is a batch of fragments
grouped in genomic regions. The base model outputs the embedding representations of
these fragments, which are grouped accordingly to form a region. This collection of fragment
embeddings is the input to the second transformer, which is trained in a weakly supervised
way; the disease label is assigned to each of the regions of the sample’s DNA. The model
is guided by a classification head that learns to predict these labels.

The input to the base model isX ∈ RB×L×d and the sequence embeddings are described
by ECLS ∈ RB×d

The architecture groups sequences by their region IDs. Let

• R ∈ NB denote the region ID assigned to each of the B sequences,
• Runique = unique(R) be the set of unique region IDs,
• N = |Runique| be the total number of distinct regions.

For each region r ∈ Runique, define the set of embeddings associated with that region as:

Hr = {ei | R[i] = r}

Here, Hr ∈ Rnr×d, where nr is the number of sequences belonging to region r, and d is
the embedding dimension.

Each region-specific embedding set Hr is then passed through an encoder:

Zr = Encoderr(Hr)

which is used by a classification head fr with the following loss function:

Lr = CrossEntropyLoss(Yr, labels)

where Yr = fr(Zr). To encourage diversity among attention heads by penalizing their
similarity, we define the loss Lattndiv as:

Lattndiv =
λ

L

L∑
l=1

1

B

B∑
b=1

1

|P|
∑

(i,j)∈P

∥∥∥A(l,b,i)(A(l,b,j))⊤
∥∥∥
F

where:

• λ: scaling factor,
• A(l,b,h) ∈ RS×S : normalised attention map,
• P: all head pairs (i, j), i < j,
• ∥ · ∥F : Frobenius norm,
• L, B, H, S: number of layers, batches, heads, and sequence length.

The total loss becomes:

Ltotal = Lr + Lattndiv

Sample Level Representation Learning: The architecture can be extended hier-
archically by reusing the base and the region level models and adding a third sample-level
model. The first two models were then frozen and the third received its inputs by grouping
region-level embeddings into individual samples. Let:
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• S ∈ NN denote the sample ID assigned to each of the N regions,
• Sunique = unique(S) be the set of unique sample IDs,
• M = |Sunique| be the total number of distinct samples.

For each sample s ∈ Sunique, we collected the embeddings of all regions belonging to
that sample:

Hs = {zri | S[i] = s}
Here, Hs ∈ Rns×d, where ns is the number of regions in sample s and r ∈ Runique.

Each sample-level set of region embeddings Hs was then passed through a transformer
encoder:

Zs = Encoders(Hs)

and the sample representation zs ∈ Rd was passed to a classification head fs.
The model was trained by assigning the sample’s condition label (e.g., AD vs. non-AD)

to the collection of all regions. The classification loss was defined as:

Ls = CrossEntropyLoss(Ys, labels)

where Ys = fs(Zs).
The overall loss combined attention diversity regularization, and sample-level classifi-

cation:

Ltotal = Ls + Lattndiv

4.5.4 Evaluation

The performance of Pleiades models and other biomarkers is measured using AuROCmetric
on the outer 5-fold cross validation of both our disease datasets. All results were reported
as mean of the 5 outer folds in Fig. 5 and Fig. S6.

5 Data Availability

This study makes use of several publicly available datasets: the DNA methylation atlas of
normal human cell types [53], cfDNA WGBS from healthy individuals [56], and the 1000
Genomes Project reference dataset [57]. Additional healthy cfDNA EMSeq data and all
Alzheimer’s disease cfDNA data generated in this study are not publicly available due to
participant privacy and ethical restrictions. Requests for access to these datasets may be
considered by the corresponding author on reasonable request, subject to appropriate data
sharing agreements and ethical approval. Processed code and pipelines are available from
the authors upon request.

6 Code Availability

The code and model weights used in this study are not publicly available, but collaborations
are welcome. Interested researchers may contact the corresponding author.
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[47] Barthélemy, N. R. et al. Highly accurate blood test for alzheimer’s disease is similar or
superior to clinical cerebrospinal fluid tests. Nature Medicine 30, 1085–1095 (2024).
URL https://doi.org/10.1038/s41591-024-02869-z.

[48] Therriault, J. et al. Diagnosis of alzheimer’s disease using plasma biomarkers adjusted
to clinical probability. Nature Aging 4, 1529–1537 (2024). URL https://doi.org/10.
1038/s43587-024-00731-y.

[49] Palmqvist, S. et al. Plasma phospho-tau217 for alzheimer’s disease diagnosis in pri-
mary and secondary care using a fully automated platform. Nature Medicine 31,
2036–2043 (2025). URL https://doi.org/10.1038/s41591-025-03622-w.

[50] della Monica, C. et al. P-tau217 and other blood biomarkers of dementia: variation
with time of day. Translational Psychiatry 14 (2024). URL https://doi.org/10.1038/
s41398-024-03084-7.

[51] Thomas Coysh, S. M. The future of seed amplification assays and clinical trials.
Frontiers in Aging Neuroscience 14 (2022). URL https://doi.org/10.3389/fnagi.2022.
872629.

[52] Wan, J. C. M., Sasieni, P. & Rosenfeld, N. Promises and pitfalls of multi-cancer early
detection using liquid biopsy tests. Nature Reviews Clinical Oncology (2025). URL
https://doi.org/10.1038/s41571-025-01033-x.

[53] Loyfer, N. et al. A dna methylation atlas of normal human cell types. Nature 613,
355–364 (2023).

29

https://doi.org/10.1016/S1474-4422(18)30403-4
https://doi.org/10.1016/S1474-4422(18)30403-4
https://doi.org/10.7554/elife.90633
https://doi.org/10.1212/wnl.0000000000012775
https://doi.org/10.1212/wnl.0000000000012775
https://doi.org/10.1038/s41392-024-01911-3
https://doi.org/10.1016/j.cell.2023.09.023
https://doi.org/10.1016/j.cell.2023.09.023
https://doi.org/10.1126/science.1090349
https://doi.org/10.1126/science.1090349
https://doi.org/10.1038/s41591-025-03605-x
https://doi.org/10.1038/s41591-025-03605-x
https://doi.org/10.1038/s41591-024-02869-z
https://doi.org/10.1038/s43587-024-00731-y
https://doi.org/10.1038/s43587-024-00731-y
https://doi.org/10.1038/s41591-025-03622-w
https://doi.org/10.1038/s41398-024-03084-7
https://doi.org/10.1038/s41398-024-03084-7
https://doi.org/10.3389/fnagi.2022.872629
https://doi.org/10.3389/fnagi.2022.872629
https://doi.org/10.1038/s41571-025-01033-x


[54] Baca, S. C. et al. Liquid biopsy epigenomic profiling for cancer subtyping. Nature
Medicine 29, 2737–2741 (2023). URL https://doi.org/10.1038/s41591-023-02605-z.

[55] Alexandra Bartolomucci, M. N. et al. Circulating tumor dna to monitor treatment
response in solid tumors and advance precision oncology. npj Precision Oncology 9
(2025). URL https://doi.org/10.1038/s41698-025-00876-y.

[56] Caggiano, C. et al. Comprehensive cell type decomposition of circulating cell-free dna
with celfie. Nature communications 12, 2717 (2021).

[57] Byrska-Bishop, M. et al. High-coverage whole-genome sequencing of the expanded
1000 genomes project cohort including 602 trios. Cell 185, 3426–3440 (2022).

[58] Bao, H. et al. Early detection of multiple cancer types using multidimensional cell-
free dna fragmentomics. Nature Medicine (2025). URL https://doi.org/10.1038/
s41591-025-03735-2.

[59] Bruhm, D. C. et al. Genomic and fragmentomic landscapes of cell-free dna for early
cancer detection. Nature Reviews Cancer 25, 341–358 (2025). URL https://doi.org/
10.1038/s41568-025-00795-x.

[60] Pollard, C., Aston, K., Emery, B. R., Hill, J. & Jenkins, T. Detection of neuron-derived
cfdna in blood plasma: a new diagnostic approach for neurodegenerative conditions.
Frontiers in Neurology 14, 1272960 (2023).

[61] Khemka, S., Sehar, U., Manna, P. R., Kshirsagar, S. & Reddy, P. H. Cell-free dna as
peripheral biomarker of alzheimer’s disease. Aging and disease 16, 787–803 (2025).

[62] Consortium, T. E. P. et al. Expanded encyclopaedias of dna elements in the human
and mouse genomes. Nature 583, 699–710 (2020). URL https://doi.org/10.1038/
s41586-020-2493-4.

[63] Chang, H. Y. Anatomic demarcation of cells: genes to patterns. Science 326, 1206–
1207 (2009).

[64] Chalkidis, I., Dai, X., Fergadiotis, M., Malakasiotis, P. & Elliott, D. An exploration
of hierarchical attention transformers for efficient long document classification (2022).
URL https://arxiv.org/abs/2210.05529. arXiv:2210.05529.

[65] Cyrus Martin, Y. Z. The diverse functions of histone lysine methylation. Nature
Reviews Molecular Cell Biology 6, 838–849 (2005). URL https://doi.org/10.1038/
nrm1761.

[66] Howard Cedar, Y. B. Linking dna methylation and histone modification: patterns and
paradigms. Nature Reviews Genetics 10, 295–304 (2009). URL https://doi.org/10.
1038/nrg2540.

[67] Jeong, H. et al. Evolution of dna methylation in the human brain. Nature
Communications 12, 2021 (2021). URL https://doi.org/10.1038/s41467-021-21917-7.

[68] Lister, R. et al. Global epigenomic reconfiguration during mammalian brain develop-
ment. Science 341 (2013). URL https://doi.org/10.1126/science.1237905.

[69] Tian, W. et al. Single-cell dna methylation and 3d genome architecture in the human
brain. Science 382, eadf5357 (2023).

[70] Liu, M. C. et al. Sensitive and specific multi-cancer detection and localization using
methylation signatures in cell-free DNA. Annals of Oncology 31, 745–759 (2020).
Publisher: Elsevier.

30

https://doi.org/10.1038/s41591-023-02605-z
https://doi.org/10.1038/s41698-025-00876-y
https://doi.org/10.1038/s41591-025-03735-2
https://doi.org/10.1038/s41591-025-03735-2
https://doi.org/10.1038/s41568-025-00795-x
https://doi.org/10.1038/s41568-025-00795-x
https://doi.org/10.1038/s41586-020-2493-4
https://doi.org/10.1038/s41586-020-2493-4
https://arxiv.org/abs/2210.05529
https://arxiv.org/abs/2210.05529
https://doi.org/10.1038/nrm1761
https://doi.org/10.1038/nrm1761
https://doi.org/10.1038/nrg2540
https://doi.org/10.1038/nrg2540
https://doi.org/10.1038/s41467-021-21917-7
https://doi.org/10.1126/science.1237905


[71] Hansen, K. D., Langmead, B. & Irizarry, R. A. BSmooth: from whole genome bisulfite
sequencing reads to differentially methylated regions. Genome Biology 13, R83 (2012).

[72] Do, C. et al. Allele-specific dna methylation is increased in cancers and its dense map-
ping in normal plus neoplastic cells increases the yield of disease-associated regulatory
snps. Genome biology 21, 1–39 (2020).

[73] Sun, T. et al. Systematic evaluation of cell type deconvolution methods for plasma
cell-free dna. bioRxiv 2024–03 (2024).

[74] McKhann, G. M. et al. The diagnosis of dementia due to alzheimer’s disease: recom-
mendations from the national institute on aging-alzheimer’s association workgroups
on diagnostic guidelines for alzheimer’s disease. Alzheimer’s & Dementia 7, 263–269
(2011). URL https://pubmed.ncbi.nlm.nih.gov/21514250/.

[75] Schindler, S. E. & Atri, A. The role of cerebrospinal fluid and other biomarker modal-
ities in the alzheimer’s disease diagnostic revolution. Nature Aging 3, 460–462 (2023).
URL https://doi.org/10.1038/s43587-023-00400-6.

[76] Hansson, O., Blennow, K., Zetterberg, H. & Dage, J. Blood biomarkers for alzheimer’s
disease in clinical practice and trials. Nature Aging 3, 506–519 (2023). URL https:
//doi.org/10.1038/s43587-023-00403-3.

[77] Jack, C. R. et al. Nia-aa research framework: Toward a biological definition of
alzheimer’s disease. Alzheimer’s & Dementia 14, 535–562 (2018). URL https:
//doi.org/10.1016/j.jalz.2018.02.018.

[78] Lewczuk, P., Lukaszewicz-Zajac, M., Mroczko, P. & Kornhuber, J. Clinical signifi-
cance of fluid biomarkers in Alzheimer’s disease. Pharmacological Reports 72, 528–542
(2020). URL https://doi.org/10.1007/s43440-020-00107-0.

[79] Palmqvist, S. et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer
disease vs other neurodegenerative disorders. JAMA 324, 772–781 (2020). URL
https://doi.org/10.1001/jama.2020.12134.

[80] Imam, F. et al. The global neurodegeneration proteomics consortium: biomarker
and drug target discovery for common neurodegenerative diseases and aging. Nature
Medicine (2025). URL https://doi.org/10.1038/s41591-025-03834-0.

[81] Oh, H. S.-H. et al. Plasma proteomics links brain and immune system aging with
healthspan and longevity. Nature Medicine (2025). URL https://doi.org/10.1038/
s41591-025-03798-1.

[82] Brown, T. B. Language models are few-shot learners. arXiv preprint arXiv:2005.14165
(2020).

[83] So, D. et al. Searching for efficient transformers for language modeling. Advances in
neural information processing systems 34, 6010–6022 (2021).

[84] Alayrac, J.-B. et al. Flamingo: a visual language model for few-shot learning. Advances
in neural information processing systems 35, 23716–23736 (2022).

[85] Adler, B. et al. Nemotron-4 340b technical report. arXiv preprint arXiv:2406.11704
(2024).

[86] Zhang, Z. et al. Relu 2 wins: Discovering efficient activation functions for sparse llms.
arXiv preprint arXiv:2402.03804 (2024).

[87] Su, J. et al. Roformer: Enhanced transformer with rotary position embedding.
Neurocomputing 568, 127063 (2024).

31

https://pubmed.ncbi.nlm.nih.gov/21514250/
https://doi.org/10.1038/s43587-023-00400-6
https://doi.org/10.1038/s43587-023-00403-3
https://doi.org/10.1038/s43587-023-00403-3
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1007/s43440-020-00107-0
https://doi.org/10.1001/jama.2020.12134
https://doi.org/10.1038/s41591-025-03834-0
https://doi.org/10.1038/s41591-025-03798-1
https://doi.org/10.1038/s41591-025-03798-1


[88] Loshchilov, I. & Hutter, F. Decoupled weight decay regularization (2019).

[89] Micikevicius, P. et al. Mixed precision training (2018).

[90] Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).
URL https://doi.org/10.1126/science.abj6987.

[91] Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics
pipelines. Nature biotechnology 38, 276–278 (2020).

[92] Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for
bisulfite-seq applications. bioinformatics 27, 1571–1572 (2011).

[93] Garrison, E., Sirén, J., Novak, A. et al. Variation graph toolkit improves read mapping
by representing genetic variation in the reference. Nature Biotechnology 36, 875–879
(2018).

[94] Robinson, J. D., Chuang, C.-Y., Sra, S. & Jegelka, S. Contrastive learning with hard
negative samples (2020).

[95] Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive
learning of visual representations, 1597–1607 (PMLR, 2020).

[96] Loyfer, N., Rosenski, J. & Kaplan, T. wgbstools: A computational suite for dna
methylation sequencing data representation, visualization, and analysis. bioRxiv 2024–
05 (2024).

[97] Pedersen, B. S., Eyring, K., De, S., Yang, I. V. & Schwartz, D. A. Fast and accurate
alignment of long bisulfite-seq reads. bioRxiv (2014). URL https://arxiv.org/abs/
1401.1129.

[98] Ryan, D. P. Methyldackel: A (mostly) universal methylation extractor for bs-seq
experiments. https://github.com/dpryan79/MethylDackel (2021).

32

https://doi.org/10.1126/science.abj6987
https://arxiv.org/abs/1401.1129
https://arxiv.org/abs/1401.1129
https://github.com/dpryan79/MethylDackel


Supplementary Materials

S1: Nucleotide Transformer Benchmarks

The official Nucleotide Transformer Benchmarks [15] consist of 18 classification tasks, where
the sequences with the positive label are sampled from genomic regions with the special
characteristics such as promoter and enhancer, and the negative sequences are sampled
from the rest of the genome. Negative sequences in the official benchmark are not fully
random, with the genomic positions of the random sequences starting only from genomic
loci divisible by 1000. Fig. S1a depicts this bias in genomic start positions. Sequences with
label 0, always start from genomic loci that have modulo 1000 with respect to 1000, but
sequences with label 1 and 2 have a uniformly random distribution with respect to start
position modulo 1000.

This systematic offset introduces a positional bias that inadvertently reduces the diver-
sity of the negative set. Because Pleiades explicitly encodes genomic coordinates, it achieves
near-perfect scores on the original NT benchmarks (see Fig. S1c)

In order to fix this bias, we add a random jitter in the range of [−500, 499) to the
start positions of negative sequences (Fig. S1b). All three labels have an indistinguishable
distribution with respect to the start position modulo 1000. We called this new dataset the
Unbiased Nucleotide Transformer Benchmark.

Fig. S1d shows that our results after fine-tuning the baseline models DNABERT-2 and
NT MS 2.5B for five epochs on our Unbiased NT Benchmarks.

Table S1: Performance (AuROC) of all models on unbiased Nucleotide-Transformer benchmark
tasks (values rounded to four decimal places).

Task DNABERT-2 NTMS2.5B Pleiades 90M Pleiades 600M Pleiades 7B

H2AFZ 0.4903 0.5358 0.7325 0.7147 0.9837

H3K27ac 0.4778 0.5141 0.7658 0.7390 0.9988

H3K27me3 0.5965 0.6294 0.7893 0.7948 0.9912

H3K36me3 0.6387 0.6636 0.7391 0.8043 0.9953

H3K4me1 0.4353 0.4886 0.7602 0.7466 0.9933

H3K4me2 0.5523 0.5695 0.7651 0.7661 0.9915

H3K4me3 0.6171 0.6328 0.7148 0.6827 0.9768

H3K9ac 0.5662 0.5423 0.7307 0.7001 0.9960

H3K9me3 0.4675 0.4876 0.6996 0.7063 0.9670

H4K20me1 0.6434 0.6608 0.8192 0.8051 0.9982

Enhancers 0.5231 0.5461 0.6230 0.6297 0.9770

Enhancers (types) 0.4658 0.5031 0.5860 0.5977 0.9000

Promoters 0.7546 0.7581 0.7416 0.7540 0.9759

Promoters (non-TATA) 0.7440 0.7921 0.7530 0.7643 0.9725

Promoters (TATA) 0.7767 0.8211 0.6002 0.7616 0.9908

Splicing (Acceptors) 0.8308 0.9657 0.9509 0.9593 0.9644

Splicing (All) 0.8496 0.9693 0.9597 0.9481 0.9659

Splicing (Donors) 0.8309 0.9736 0.9652 0.9694 0.9660
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Fig. S1:NT Benchmarks Positional Bias, Unbiased Dataset and Performance Compar-
isons (a) Polar plot showing distribution of start position modulo 1000 of Official NT Benchmarks,
separated by label. (b) Unbiased dataset where the bias is removed. (c) Comparison of MCC for
Pleiades 90M vs Best Performing Baseline Models from Nucleotide Transformer [15] on official NT
Benchmarks Data. (d) MCC Comparison for Baseline Models on NT-Benchmarks Official Data
vs our Unbiased Data.

S2: cfDNA Generation Task Regions

Supplementary Table S2 lists all the regions used in the analysis in section 2.3. The stable
nucleosome was determined using NucPosDB1. To identify these regions, we selected 80
high-coverage 1kb intervals from our cfDNA test-set biosamples that do not overlap any
repetitive elements (as defined by the UCSC Genome Browser’s RepeatMasker track).

Table S2: 1kb Regions Evaluated for cfDNA Generation

Chromosome Region Start Region End Stable Chromatin

chr1 16,617,000 16,618,000 No

chr1 107,143,000 107,144,000 Yes

Continued on next page. . .

1https://generegulation.org/stable-nucleosomes/
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Table S2 (continued)

Chromosome Region Start Region End Stable Nucleosome

chr2 89,768,000 89,769,000 No

chr2 174,338,000 174,339,000 Yes

chr2 192,197,000 192,198,000 Yes

chr3 107,527,000 107,528,000 No

chr3 113,945,000 113,946,000 Yes

chr4 105,149,000 105,150,000 No

chr4 183,101,000 183,102,000 Yes

chr5 120,466,000 120,467,000 No

chr5 141,363,000 141,364,000 Yes

chr5 146,379,000 146,380,000 Yes

chr6 1,514,000 1,515,000 No

chr6 10,885,000 10,886,000 No

chr6 53,648,000 53,649,000 No

chr6 56,543,000 56,544,000 No

chr6 70,960,000 70,961,000 No

chr6 79,079,000 79,080,000 No

chr6 84,770,000 84,771,000 No

chr6 96,833,000 96,834,000 Yes

chr6 98,838,000 98,839,000 No

chr7 28,177,000 28,178,000 Yes

chr7 28,850,000 28,851,000 No

chr7 29,196,000 29,197,000 Yes

chr8 30,386,000 30,387,000 No

chr8 64,584,000 64,585,000 No

chr8 66,173,000 66,174,000 No

chr8 66,922,000 66,923,000 Yes

chr8 80,488,000 80,489,000 No

chr8 123,271,000 123,272,000 No

chr8 124,369,000 124,370,000 No

chr9 968,000 969,000 Yes

chr9 86,942,000 86,943,000 Yes

chr9 89,003,000 89,004,000 No

chr10 22,314,000 22,315,000 No

chr10 133,526,000 133,527,000 Yes

chr11 59,062,000 59,063,000 Yes

chr11 125,168,000 125,169,000 No

chr12 67,271,000 67,272,000 Yes

Continued on next page. . .
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Table S2 (continued)

Chromosome Region Start Region End Stable Nucleosome

chr12 79,687,000 79,688,000 No

chr13 46,384,000 46,385,000 Yes

chr13 99,976,000 99,977,000 No

chr14 19,344,000 19,345,000 No

chr14 61,697,000 61,698,000 Yes

chr15 20,360,000 20,361,000 No

chr15 35,118,000 35,119,000 No

chr15 52,567,000 52,568,000 No

chr15 66,295,000 66,296,000 Yes

chr15 67,523,000 67,524,000 No

chr15 81,004,000 81,005,000 No

chr15 96,335,000 96,336,000 No

chr16 46,390,000 46,391,000 No

chr16 79,596,000 79,597,000 Yes

chr17 44,828,000 44,829,000 Yes

chr17 70,166,000 70,167,000 No

chr18 3,497,000 3,498,000 No

chr18 3,502,000 3,503,000 No

chr18 31,103,000 31,104,000 No

chr18 57,356,000 57,357,000 Yes

chr18 70,204,000 70,205,000 No

chr18 80,146,000 80,147,000 No

chr19 266,000 267,000 No

chr20 34,214,000 34,215,000 No

chr20 59,943,000 59,944,000 Yes

chr21 10,625,000 10,626,000 No

chr21 32,414,000 32,415,000 Yes

chr22 11,624,000 11,625,000 No

chr22 25,567,000 25,568,000 Yes
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S3: Cell Type-of-Origin

Fig. S2: Pleiades 90M Embeddings reduced to 2 dimensions using UMAP and colour-coded by
cell type. The left is the pretrained model’s representations with no discernible separation between
cell types. The right image shows the model representations following fine-tuning.

Mixture Name B cell T cell
Monocyte &

Macrophage
Neuron Oligodendrocyte Hepatocyte

1-Cell Mix 1

1-Cell Mix 1

1-Cell Mix 1

1-Cell Mix 1

1-Cell Mix 1

1-Cell Mix 1

2-Cell Mix 0.5 0.5

2-Cell Mix 0.5 0.5

2-Cell Mix 0.5 0.5

3-Cell Mix 0.33 0.34 0.33

3-Cell Mix 0.34 0.33 0.33

3-Cell Mix 0.33 0.34 0.33

4-Cell Mix 0.25 0.25 0.25 0.25

6-Cell Mix 0.17 0.17 0.17 0.16 0.16 0.17

Table S3: Cell-Type mixture proportions used for deconvolution benchmarking. Blank entries indi-
cate zero proportion.
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Fig. S3: CToO F1 scores over official Top 25, Top 100 and Top 1000 markers called from training
data.
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Fig. S4: Out-of-distribution CToO F1 scores over official Top 25, Top 100 and Top 1000 markers
called from training data.
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Fig. S5: Out-of-distribution CToO Recall over Top 1000 markers called from training data.
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S4: Neurodegenerative Disease Diagnosis

a

b

Fig. S6: AD Marker Discovery Process with Pleiades (a) AD marker discovery pipeline on
an example fold of the outer five-fold split. The train set is divided into five inner folds. Starting
from broad genomic regions across four cell type marker region sets, we select the regions with
AuROC > 0.6 with p-value < 0.01 for at least four out of five inner folds. If more than four regions
pass this test, we sort by number of folds passing the test and average AuROC, both descending,
and select only top four. If any regions are selected, we train the region-level and sample-level
models on those selected regions only. Final sample level performance in this example outer fold
is shown along with the starting regions and the T-test outcomes for region selection. (b) Same
method applied to pUC19 and Lambda DNA spike-ins; no signal was detected and the model
rejected all regions.

.
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Proteomic Marker Test Direction Wilcoxon Statistic p−value

AB40 (pg/ml) Greater 15.0 0.0312

AB42 (pg/ml) Greater 15.0 0.0312

AB42 (pg/ml)

AB40 (pg/ml)
Greater 15.0 0.0312

NFL (pg/ml) Greater 15.0 0.0312

GFAP (pg/ml) Greater 14.0 0.0625

pTau-181 (pg/ml) Greater 13.0 0.0938

pTau-217 (pg/ml) Greater 4.0 0.6875

pTau-217 (pg/ml) Less 4.0 0.4375

Table S4: Comparison of Pleiades 7B AuROC (average pooled on all cell type markers) vs. Pro-
teomic Markers using one-sided Wilcoxon Test. Test direction column represents the direction used
during testing, with Greater meaning Pleiades AuROC > proteomic AuROC and Less meaning
Pleiades AuROC < proteomic AuROC. For all markers other than pTau-217, only Greater direc-
tion was used due to the large distance in means in favour of Pleiades 7B.
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